

Some Things to Consider When Choosing the Proper Steel

Material Cost – Is there a lower cost option that would provide the same quality?
Formability – Can the material be easily formed based on geometry? What level of processing is required?
Hardenability – Can the material be properly heat treated based on size/geometry?
Compliance with Standards/Specifications – Does the material meet print requirements?
Tool Life/Tooling Costs – What are the indirect costs of using a less expensive material?
Machine Downtime/Set-up Time – What are the indirect costs of using a less expensive material?
Potential for Cracked/Scrapped Parts (Sorting) – What are the indirect costs of using a less expensive material?
Susceptibility to Quench Cracking – Large parts, sharp radii, thin sections, large volume transitions, etc.
Service Environment – Exposure to temperature, humidity, salt, etc.

Additional Considerations/Options

Microalloys:

- Strength by work hardening (no heat treat required).
- Typically used on long parts with susceptibility to warping during heat treat.

PPAP's:

- Customer approval.
- Joint re-validation.

Head Marking:

 Some specifications require a special head marking (e.g. underline property class – "<u>10.9</u>") when using a lower carbon boron steel.

Special Applications:

- May have to avoid elevated service temperatures (e.g. above 500° F).
- May have to avoid extreme low service temperatures (impact strength). The ductile-to-brittle transition temperatures should be considered based on the specific application.
- Safety parts may have special material requirements (e.g. FMVSS).

Jominy Test (ASTM A255)

- 1" diameter sample machined from billet / rolled stock.
- Sample is heated to a specific temperature (based on size and grade) for 35 minutes minimum.
- Sample is water quenched in a tank with standardized flow rate, water temperature, & distance.

What Does Boron Actually Do?

- Added in small amounts (0.0008% to 0.003%) to significantly increase hardenability.
- An addition of 30 ppm (0.003%) gives a hardenability equivalent to 0.6% Mn, 0.7% Cr, 0.5% Mo or 1.5% Ni.
- Ti addition (0.01% 0.05%) prior to boron addition (Ti ties up N titanium nitrides).
- Boron goes into solution (active) instead of forming boron nitrides.
- Actual jominy (as opposed to calculated) is performed on all boron steels to verify boron
 effectiveness.

11

<image><image><section-header><section-header><list-item><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

13

Example of A	lternati	ve Options	\$		
Characteristic	Current Grade	Alternative Option #1	Alternative Option #2	Alternative Option #3	
Grade	4037	5135	15B37	10B22	
Chemistry Difference (compared to 4037)		higher Cr, no Mo	B, higher Mn, no Mo	B, lower C, no alloys	
Tempering Temperature (to hit approximately 36 HRC)	850° F	900° F	850° F	650° F	
Hardenability	Fair to Good	Good	Good to Excellent	Good	
Formability	Good	Fair	Fair	Good to Excellent	
Susceptibility to Quench Cracking	High	High	High	Low	
					I

Summary and Conclusion

- There are numerous things to consider when choosing the right material for the job.
- Choosing the right material for the application is key to producing high quality parts and controlling both up-front (material) costs as well as indirect costs such as tool usage, downtime, sorting, etc.
- There are typically several options available when choosing material.
- Choosing the wrong material could potentially result in poor quality, excessive costs, excessive downtime, poor part performance, etc.
- Charter's Technical Service Engineers (TSE's) are always available as your ally to assist/advise in any raw material decisions.

